On December 5, 2024, Tencent released HunyuanVideo, a 13 billion parameter video generation model that immediately set new standards for open-source AI video technology. As the largest open-source video generation model ever released, HunyuanVideo combines exceptional quality metrics (68.5% text alignment, 96.4% visual quality) with complete code and weights availability on GitHub.
Technical Architecture: 3D VAE and Diffusion Transformers
At the core of HunyuanVideo's exceptional quality is its advanced 3D Variational Autoencoder (VAE). Traditional 2D VAEs process each video frame independently, leading to temporal inconsistencies. HunyuanVideo's 3D VAE treats time as a fundamental dimension, ensuring smooth motion and visual consistency.
Advanced Camera Control System
- Zoom In / Zoom Out for dramatic emphasis
- Pan Up / Pan Down for vertical movement
- Tilt Up / Tilt Down for camera rotation
- Orbit Left / Orbit Right for 360-degree reveals
- Static Shot for stable framing
- Handheld Camera Movement for documentary-style realism
Open Source Advantages
Tencent's decision to release HunyuanVideo as fully open-source (Apache 2.0 license) represents a significant contribution to the AI community. Developers can fine-tune for specific domains, deploy on-premises for data privacy, and generate unlimited videos without API costs.
Hardware Requirements
- Minimum: 60GB GPU memory for 720p generation
- Recommended: 80GB GPU memory for optimal quality
- Suitable GPUs: NVIDIA A100 (80GB), H100, H200
- Cloud Options: Lambda Labs, HyperStack, AWS p4d/p5 instances
Implementation Example: Basic Video Generation
This example demonstrates how to set up HunyuanVideo for basic text-to-video generation with camera controls:
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
# Initialize the model with memory optimization
model_id = "tencent/HunyuanVideo"
# Load transformer with 8-bit quantization for 60GB GPUs
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
torch_dtype=torch.float16,
revision="refs/pr/18"
)
# Initialize pipeline with optimizations
pipe = HunyuanVideoPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=torch.float16,
revision="refs/pr/18"
)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
# Generate video with camera control
prompt = """A cinematic shot of a majestic eagle soaring through
mountain valleys at golden hour, photorealistic details,
4K quality. Camera: Orbit Right, then Zoom In."""
output = pipe(
prompt=prompt,
height=720,
width=1280,
num_frames=129, # ~5 seconds at 25 fps
num_inference_steps=50,
guidance_scale=7.5,
generator=torch.Generator("cuda").manual_seed(42)
)
# Export to MP4
export_to_video(output.frames[0], "eagle_flight.mp4", fps=25)
print("Video generated: eagle_flight.mp4")
Advanced Example: Image-to-Video with Multiple Camera Movements
For more control, you can use image conditioning and specify complex camera movements:
from PIL import Image
import torch
from diffusers import HunyuanVideoPipeline
from diffusers.utils import export_to_video, load_image
# Initialize pipeline (same as above)
pipe = HunyuanVideoPipeline.from_pretrained(
"tencent/HunyuanVideo",
torch_dtype=torch.float16,
revision="refs/pr/18"
)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
# Load starting frame
init_image = load_image("product_shot.jpg")
init_image = init_image.resize((1280, 720))
# Complex prompt with multiple camera movements
prompt = """Professional product reveal of luxury smartwatch on marble pedestal,
studio lighting with soft shadows, premium materials.
Camera sequence: Start Static Shot, then Orbit Right 180 degrees,
finish with Zoom In on watch face details, cinematic motion."""
negative_prompt = """blurry, low quality, distorted, warped,
unrealistic motion, jerky movement, artifacts"""
# Generate with image conditioning
output = pipe(
prompt=prompt,
image=init_image,
negative_prompt=negative_prompt,
height=720,
width=1280,
num_frames=193, # ~8 seconds
num_inference_steps=60,
guidance_scale=8.0,
strength=0.8, # How much to transform the input image
generator=torch.Generator("cuda").manual_seed(123)
)
export_to_video(output.frames[0], "product_reveal.mp4", fps=25)
# Optional: Generate multiple variations
for i, seed in enumerate([42, 123, 456]):
output = pipe(
prompt=prompt,
image=init_image,
negative_prompt=negative_prompt,
height=720,
width=1280,
num_frames=129,
num_inference_steps=50,
guidance_scale=8.0,
generator=torch.Generator("cuda").manual_seed(seed)
)
export_to_video(output.frames[0], f"variation_{i}.mp4", fps=25)
print(f"Generated variation {i} with seed {seed}")
Batch Processing with Memory Management
For generating multiple videos efficiently with limited GPU memory:
import torch
import gc
from diffusers import HunyuanVideoPipeline
from diffusers.utils import export_to_video
def generate_video_batch(prompts, output_dir="output"):
"""Generate multiple videos with automatic memory management."""
pipe = HunyuanVideoPipeline.from_pretrained(
"tencent/HunyuanVideo",
torch_dtype=torch.float16,
revision="refs/pr/18"
)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
# Camera movement presets
camera_presets = {
"dynamic": "Camera: Orbit Right, Tilt Up",
"cinematic": "Camera: Zoom In, Pan Down",
"stable": "Camera: Static Shot with Handheld Movement",
"reveal": "Camera: Zoom Out, Orbit Left"
}
results = []
for idx, prompt_config in enumerate(prompts):
prompt_text = prompt_config["prompt"]
camera_style = prompt_config.get("camera", "dynamic")
# Add camera movement to prompt
full_prompt = f"{prompt_text}. {camera_presets[camera_style]}"
print(f"Generating video {idx + 1}/{len(prompts)}...")
try:
output = pipe(
prompt=full_prompt,
height=720,
width=1280,
num_frames=129,
num_inference_steps=50,
guidance_scale=7.5,
generator=torch.Generator("cuda").manual_seed(
prompt_config.get("seed", 42)
)
)
filename = f"{output_dir}/video_{idx:03d}.mp4"
export_to_video(output.frames[0], filename, fps=25)
results.append({"id": idx, "file": filename, "status": "success"})
except RuntimeError as e:
print(f"Error generating video {idx}: {e}")
results.append({"id": idx, "status": "failed", "error": str(e)})
finally:
# Clear GPU memory between generations
torch.cuda.empty_cache()
gc.collect()
return results
# Example usage
prompts = [
{"prompt": "Sunset over ocean waves", "camera": "cinematic", "seed": 42},
{"prompt": "City skyline at night with traffic", "camera": "dynamic", "seed": 123},
{"prompt": "Forest path with autumn leaves", "camera": "stable", "seed": 456}
]
results = generate_video_batch(prompts)
print(f"Generated {sum(1 for r in results if r['status'] == 'success')} videos")
Conclusion
HunyuanVideo represents a watershed moment for open-source AI video generation. By releasing a 13 billion parameter model with state-of-the-art capabilities under a permissive license, Tencent has dramatically lowered barriers to entry for researchers and developers wanting to work with cutting-edge video generation technology.